Medical Image Compression with Lossless Regions of Interest Header and Information = Pages 1-2
نویسنده
چکیده
Many classes of images contain some spatial regions which are more important than other regions. Compression methods which are capable of delivering higher reconstruction quality for the important parts are attractive in this situation. For medical images, only a small portion of the image might be diagnostically useful, but the cost of a wrong interpretation is high. Algorithms which deliver lossless compression within the regions of interest, and lossy compression elsewhere in the image, might be the key to providing e cient and accurate image coding to the medical community. We present and compare several new algorithms for lossless region-of-interest (ROI) compression. One is based on lossless coding with the S-transform, and two are based on lossy wavelet zerotree coding together with either pixel-domain or transformdomain coding of the regional residual. We survey previous methods for region-based coding of medical images. Abstract Un bon nombre d'images contiennent des r egions dans l'espace qui sont plus importantes que d'autres. Les m ethodes de compression qui sont capables de restituer la meilleure qualit e de reconstruction pour ces parties importantes deviennent alors tr es int eressantes. Dans le cas des images m edicales, seulement une seule portion d'image peut être utile pour etablir un diagnostic, mais le cout d'une mauvaise interpr etation peut être tr es elev e. Les algorithmes qui e ectuent une compression sans perte dans les r egions int eressantes et une compression avec pertes partout ailleurs, pourraient être la solution pour fournir un codage d'image e cace et pr ecis pour le domaine m edical. Nous pr esentons et comparons plusieurs algorithmes pour la compression sans perte des r egions d'interet (ROI). L'un est bas e sur le codage sans perte avec la transformation en S, et deux autres sont bas es sur le codage avec pertes (ondelettes "zerotree"); parmi ces 2 derniers, en codant les residus par r egion, l'un fonctionne dans le 3 domaine des pixels, l'autre dans le domaine de la transform e par ondelette. Nous balayons rapidement les methodes deja publi ees pour le codage bas e sur le principe de r egions.
منابع مشابه
Medical Image Compression Based on Region of Interest
Medical images show a great interest since it is needed in various medical applications. In order to decrease the size of medical images which are needed to be transmitted in a faster way; Region of Interest (ROI) and hybrid lossless compression techniques are applied on medical images to be compressed without losing important data. In this paper, a proposed model will be presented and assessed...
متن کاملSelective Medical Image Compression using Wavelet Techniques 1
Selective Image Compression (SeLIC) is a compression technique where explicitly deened regions of interest (RoI) are compressed in a lossless way whereas image regions containing unimportant information are compressed in a lossy manner. Such techniques are of great interest in telemedicine or medical imaging applications with large storage requirements. In this paper we introduce and compare di...
متن کاملفشردهسازی تصویر با کمک حذف و کدگذاری هوشمندانه اطلاعات تصویر و بازسازی آن با استفاده از الگوریتم های ترمیم تصویر
Compression can be done by lossy or lossless methods. The lossy methods have been used more widely than the lossless compression. Although, many methods for image compression have been proposed yet, the methods using intelligent skipping proper to the visual models has not been considered in the literature. Image inpainting refers to the application of sophisticated algorithms to replace lost o...
متن کاملMEDICAL IMAGE COMPRESSION: A REVIEW
Within recent years the use of medical images for diagnosis purposes has become necessity. The limitation in transmission and storage space also growing size of medical images has necessitated the need for efficient method, then image Compression is required as an efficient way to reduces irrelevant and redundancy of the image data in order to be able to store or transmits data. It also reduces...
متن کاملSegmentation-Based Multilayer Diagnosis Lossless Medical Image compression
Hospital and clinical environments are moving towards computerisation, digitisation and centralisation, resulting in prohibitive amounts of digital medical image data. Compression techniques are, therefore, essential in archival and communication of medical image. Although lossy compression yields much higher compression rates, the medical community has relied on lossless compression for legal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997